翻訳と辞書 |
Wright Omega function : ウィキペディア英語版 | Wright Omega function
In mathematics, the Wright omega function or Wright function,〔Not to be confused with the Fox–Wright function, also known as Wright function.〕 denoted ω, is defined in terms of the Lambert W function as: : ==Uses== One of the main applications of this function is in the resolution of the equation ''z'' = ln(''z''), as the only solution is given by ''z'' = ''e''−ω(''π'' ''i''). ''y'' = ω(''z'') is the unique solution, when for ''x'' ≤ −1, of the equation ''y'' + ln(''y'') = ''z''. Except on those two rays, the Wright omega function is continuous, even analytic.
抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)』 ■ウィキペディアで「Wright Omega function」の詳細全文を読む
スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース |
Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.
|
|